El aprendizaje automático, o Machine Learning (ML), es una rama de la inteligencia artificial que se centra en la creación de sistemas que pueden aprender y mejorar a partir de la experiencia sin ser explícitamente programados para cada tarea específica. Este campo ha ganado una gran relevancia en los últimos tiempos debido a los avances en el procesamiento de datos, la disponibilidad de grandes volúmenes de información y el incremento en la capacidad de computación y soluciones Cloud. Vamos a explorar algunos conceptos fundamentales de ML, que problemas surgen en la práctica, como podemos limpiar los datos y que técnicas podemos emplear, que es la validación cruzada y algunos desafíos específicos que plantean los algoritmos. Conceptos Fundamentales de Machine Learning Tipos de Aprendizaje Aprendizaje Supervisado : En este tipo de aprendizaje, el modelo se entrena utilizando un conjunto de datos etiquetados, lo que significa que cada ejemplo de entrenamiento viene con una etiquet...